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Causal Inference and the Heckman Model

Abstract

In the social sciences, evaluating the effectiveness of a program or intervention

often leads researchers to draw causal inferences from observational research designs.

Bias in estimated causal effects becomes an obvious problem in such settings. I present

the Heckman Model as an approach sometimes applied to observational data for the

purpose of estimating an unbiased causal effect. I show how the Heckman Model can be

viewed as an extension of the linear regression model, and discuss in some detail the

assumptions necessary before either approach can be used to make causal inferences.

Linear regression and the Heckman Model make different assumptions about the

relationship between two equations in an underlying behavioral model: a response

schedule and a selection function. Under linear regression the two equations are assumed

to be independent; under the Heckman Model, the two equations are allowed to be

correlated. The Heckman Model is particularly sensitive to the choice of variables

included in the selection function. This is demonstrated empirically in the context of

estimating the effect of commercial coaching programs on the SAT performance of high

school students. I estimate coaching effects for both sections of the SAT using data from

the National Education Longitudinal Study of 1988 (NELS). Small changes in the

selection function are shown to have a big impact on estimated coaching effects under the

Heckman Model.
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Causal Inference and the Heckman Model

Introduction

In the social sciences, evaluating the effectiveness of a program or intervention

often leads researchers to draw causal inferences from observational research designs.

Suppose a study involves a sample of high school students. One group of students takes

part in a program that promises to improve their type-writing speed, and the other group

does not. After the former group has completed the program, the average number of

words typed per minute for the two groups are compared. Can a difference between the

groups be attributed to the program? This is the key question in making causal

inferences. In this hypothetical example, treatment and control groups are not randomly

assigned. Thus, outcome differences between the groups may be explained by other

characteristics on which the two groups differ. Causal effect estimates calculated by

comparing averages will tend to suffer from bias', which can lead to incorrect inferences

about program effectiveness.

A number of statistical methods have been used in observational settings to

control for bias. There is a common thread running through all these approaches: the idea

that an observational study can be considered as a randomized experiment, conditional on

certain covariates. The approaches differ in the statistical assumptions they make and the

methods they apply to the data. In this paper the focus is on a method of controlling for

The term bias is defined here in a statistical context (e.g. an estimated causal effect is biased), not an

educational measurement context (e.g. the test items are biased against certain types of students).
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Causal Inference and the Heckman Model

bias known as the Heckman Model.2 I present the Heckman Model as an extension of the

linear regression model, and compare the similarities and differences between the two

models as approaches for drawing causal inferences. While the Heckman Model is a

well-established approach among econometricians, its use is less common among

educational statisticians. The first part of this paper will serve as a didactic introduction

to the Heckman Model for the benefit of this latter audience. The rest of the paper raises

questions about the sensitivity of the Heckman Model to its specification, and is aimed at

the wider audience of social scientists who might employ the approach as a tool for

causal inference.

To give this presentation an applied context, both the linear regression model and

Heckman Model are used to evaluate the effectiveness of coaching programs in

improving performance on the SAT. The SAT is a standardized test required for

admission at almost all competitive four-year colleges in the United States.3 The test has

a math and verbal section, each scored on a scale that ranges from 200 to 800 with

standard deviation of about 110 points. Each year about two million high school students

take the SAT at a cost of about $25 each. Coaching for the SAT (and many other

2 Three other popular approaches that are sometimes used in this context include the Propensity Matching

Model (Rosenbaum & Rubin, 1983), two stage least squares (Greene 1993, 603-10), and structural equation

modeling (Joreskog & Sorbom, 1996).

3 As of 1994, the SAT became the SAT I. For the sake of consistency, the term SAT is used throughout

generically to represent a multiple-choice test used for purposes of college admission. For a historical

description of the SAT in the context of its use in college admissions decisions see Zwick, 2002; Lawrence

et. al., 2001; Lemann, 1999.
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Causal Inference and the Heckman Model

standardized tests) is a multimillion dollar industry. Companies such as Kaplan and The

Princeton Review charge roughly $800 for 30-40 hours of instruction, and attribute to

their programs average gains of 100-140 points on the combined math and verbal

sections of the test (Schwartz, 1999). Private tutors, books, videos and computer software

are also available, at a price, to help students prepare for the test. It has become widely

accepted among the general public that coaching has a large effect on student scores. Yet

most of the published research on the topic suggests that the combined coaching effect is

fairly small, in the range of about 20 to 30 points (cf. Messick, 1980; Messick &

Jungeblut, 1981; Becker, 1990; Powers, 1997, Powers & Rock, 1999). One problem for

this line of research has been that coaching effect estimates are usually based on studies

with observational designs, making clear causal inference about coaching effectiveness

elusive.

When certain assumptions hold the Heckman Model is a statistical approach that

could be used to estimate an unbiased effect of coaching. On the face of things, the

Heckman Model is an attractive solution to the problem of bias in an estimated coaching

effect. It extends the linear regression model by turning the problem of confounding due

to a latent covariate (i.e. "selection bias") into that of confounding due to a measured

covariate omitted from a regression equation (i.e. "omitted variable bias"). The

theoretical benefits of the approach are considerable, but as I demonstrate, there are

rather large empirical costs.
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Causal Inference and the Heckman Model

Bias and Statistical Solutions

The objective in a randomized study is to determine the strength of a

hypothesized causal relationship between, for example, coaching status (COACH) and

SAT scores (Y) as in Figure 1.

COACH Y

Figure 1. Causation

In an observational study with the same objective, it is usually conceivable, and often

highly likely that other covariates may confound the relationship between the treatment

and the outcome, as in figure 2.

X

COACH Y

Figure 2. Confounding

In Figure 2, X represents a set of covariates that might include each student's pre-

coaching SAT score and socioeconomic status. These covariates may influence post-

coaching performance on the SAT and also be correlated with coaching status. The

relationship between Y and COACH is thus confounded by X. A statistical approach

frequently applied to correct for the possibility of bias due to confounding is linear

6



Causal Inference and the Heckman Model

regression. In what follows a specialized version of linear regression is presented to

facilitate a comparison with the Heckman Model .4

Consider the following behavioral model:

f,(COACH)= a + bCOACH + X,c + GE, (1)

COACH, =laa+X,y+5,>0. (2)

The model consists of a response schedule (1) and a selection function (2). In the

response schedule, a student's potentially observable SAT score is a function of COACH.

Two different scores are possible for student i, depending on whether COACH = 1 or 0.

The variable COACH is in theory manipulableif its value is changed, the SAT score

subsequently observed for student i will change as well (unless, of course, there is no

coaching effect). The observed covariates in the vector Xi are fixed characteristics of each

studentthey cannot be manipulated by the researcher. The response schedule specified

here assumes a linear relationship between the variable COACH and the SAT score, with

a constant effect across individuals, represented by the parameter b. Likewise, the effect

of Xi is linear, and c is the same for all students. The "error" term ati represents the

deviation of student SAT score from its expected value. In an experimental setting, the

observed value of COACH for student i would be assigned by the researcher with a

known probability. Here, the observed value of COACH is assumed to be governed by

the selection function. I describe the selection function in more detail in the context of the

4 The specialization comes primarily from restrictions on the distribution of the unobservable error terms.

Linear regression could be used to make causal inferences under more general assumptions. See for

example, Freedman, 2002 and Holland, 2001.
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Causal Inference and the Heckman Model

Heckman Model. For now it suffices to note that the function implies that student i's

decision to seek coaching depends on observable covariates in the vector Xi, and on the

latent covariate

In an observational study, the researcher observes the triple {Yi, COACH;, X, },

where COACH; is determined by the selection function (2), and

Y. = f, (COACH) = a + bCOACH ,+X,c + as, (3)

is determined by the response schedule (1). Further statistical assumptions must be made:

i) (ei, 6;) are independently and identically distributed (iid) in i with a standard

normal distribution;

ii) {Xi: i = 1, , N} is independent of {ei, 8;: i= 1, ,N }

iii) &and si are independent within student i.

According to these assumptions, the data generated from (1) and (2) have the feature that

{(X1, (5;): i = 1, , N} is independent of {ei: i = 1, , N}. It follows therefore that

{(X,,COACH,) : i = 1,...,N} is independent of {ei: i = 1, , N} . Thus, COACH; and X1

are exogenous, so ordinary least squares (OLS) can be used to get unbiased estimates for

the parameters a, b and c, by running a linear regression of Y; on a constant, COACH; and

Xi.

In making causal inferences about the effectiveness of coaching, b is the

parameter of interest, with a causal interpretation because of Equation 1. In other

presentations of unbiased parameter estimation using linear regression, it is assumed that

E(s, I COACH ,X,)= 0. (4)

8



Causal Inference and the Heckman Model

This follows from assumptions i, ii and iii.

The linear regression adjustment for X is essentially a replacement for random

assignment in an experimental design. However, the assumptions that treatment status

and covariate values are independent of the error terms, and that error terms are

independent within and across cases, are clearly rather difficult to defend in the absence

of a theoretical understanding of the causal mechanism at work. A common criticism

among statisticians is that the plausibility of such assumptions in observational settings is

seldom given adequate consideration.5

Implicit in estimating the effect of coaching by linear regression is that any

differences between coached and uncoached students related to SAT performance are

accounted for by X: bias is a function of variables omitted from the regression equation.

To see this more clearly, consider the linear regression equation presented in matrix

format. Let M be a matrix containing the constant term and observed values of COACH;

for i = 1, , N students in a given study. Let the matrix X represent the collection of

covariate values X for i = 1, ,N . Similarly, the SAT score Y, and the error term Ei are

collected into the vectors Y and E. Then, in matrix format

Y=Mb+Xc+e, (5)

5 Some exchanges along these lines can be found in Freedman (1987; 1995). For a different interpretation

of the c term in line with the Neyman-Rubin model for causal inference, see Holland, 2001.

9
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Causal Inference and the Heckman Model

where b = [a b] . If instead of the regression implied by Equation 5, the researcher

regressed Y on M, omitting the confounding variables X, then the OLS estimate of the

average coaching effect would be biased, since

= (MGM) M'Y

= (MiM)
1

M'Mb + (WWI)
1

M'Xc + (M1M) M'E

E(is I M, X) = b + (MGM) IMiXc.

The estimate of b is biased by (MiM) iMiXc . This is "omitted variable" bias.

(6)

Clearly linear regression is useful because it can reduce bias caused by

confounding variables. For example, students who do well on the PSAT (a pre-test for the

SAT) may be less likely to get coached, but more likely to do well on the SAT. If this is

the case, omitting PSAT scores as a covariate in the regression equation will result in a

biased coaching effect estimate. A key point is that omitted variable bias is not the same

thing as "selection bias." Selection bias occurs when the variable COACH, is

endogenouscorrelated to a latent covariate that has not been measured. If this is the

case, the linear regression model generally will not produce unbiased estimates of the

coaching effecteven if all the relevant observed covariates are included. The so-called

Heckman Model (Heckman, 1978; 1979; Heckman & Robb, 1986; Greene, 1993), named

after economist James Heckman who first developed the approach, has been applied in

certain contexts as a general strategy for estimating a causal parameter in the presence of

selection bias.
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Causal Inference and the Heckman Model

The Heckman Model

Under the Heckman Model, the variables in the regression equation are allowed to

be correlated with the error term Ei. In other words, the variables may be endogenous, so

any causal parameter will suffer from selection bias.6

The motivation for the Heckman approach is essentially the same behavioral

model as the one behind the use of linear regression:

f,(COACH)= a + bCOACH + X,c + as,

COACH, =1 a a +X,y +8, >0.

(7)

(8)

Everything in the causal relationship is the same as the one specified using the response

schedule and selection function in (1) and (2). Observed SAT scores are again generated

as

= f(COACH ;)= a + bCOACH + Xic + as (9)

where COACH; is determined by Equation 8. Assumptions i and ii are also retained:

i) (Ei, (5i) are iid in i with a standard normal distribution;

ii) {Xi: i = 1, , N} is independent of {Ei, öi: i = 1, ... ,N} .

What has changed in the behavioral model? The critical change is that assumption iii is

dropped. It is relaxed to allow Ei and of to be correlated. This introduces a new parameter,

p, into the model. Under assumption iii of the linear regression model, the correlation p

6 In this context, the term "selection bias" is being used synonymously with the term "endogeneity bias."
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Causal Inference and the Heckman Model

between si and 6; was restricted to 0. For the Heckman Model, p is allowed to take on any

value between -1 and 1.

The causal parameter of interest is still b. Note that ifs; and Si were not

correlated, e.g. p = 0, then there would be no selection bias problemlinear regression

could be used to correct for confounding and estimate an unbiased coaching effect.

Intuitively, p 0 will be the case if an unobserved reason why students decide to get

coached is correlated with an unobserved reason that students perform well on the SAT.

For example, suppose students with more "grit" are the ones most likely to get coached.

At the same time, suppose students with more "moxie" will perform better on the SAT. (I

offer no definition of grit and moxie; the two are distinguishable but latent.) While the

linear regression model would assume that grit (i.e. 6i) and moxie (i.e. ei) are

independent, the Heckman Model allows for the possibility that they are correlated.

Given Equations 7-8 and assumptions i and ii, if p 0 and the parameters a, b and

c were estimated by regressing Y; on a constant, COACH; and Xi, the estimates would be

biased. Because p 0, the variable COACH; is endogenous, and E(e I COACH,,X,)# 0.

The Heckman Model strategy is to get an estimate for this term, and then treat it as an

observable confounder. Let X, = E(e, I COACH,,X,) . If this value were known for

student i, then regressing Yi on a constant, COACH;, X; and A; would produce unbiased

parameter estimates for a, b, c and h, where h is the regression coefficient associated with

Ai. Now, E(e, I COACH ,,X,) = 0. If the assumptions of the Heckman Model are to

be believed, then selection bias has been purged from the estimate of b.

12



Causal Inference and the Heckman Model

In practice, Ai is not known, but given the assumption that Ei and 5i have standard

normal distributions, A be calculated as a function of the estimated parameters

ci and if in the selection function (8). Now, assuming that all confounding in the

relationship between Yi and COACH; is due to Xi, and all selection bias is due to A: , then

regressing Y, on a constant, COACH;, X; and A: will almost control for bias in the

estimate of b due to both confounding and self-selection. Heckman (1979) has shown that

b will converge to b asymptotically, sob will be biased but consistent. The details of the

Heckman Model for the coaching application are sketched out below.

The starting point for the Heckman Model is the selection function describing the

way students decide whether or not they will seek coaching. The vector Xi contains

observable covariates related to the probability that a student is coached.7 Latent

covariates enter the picture through c5i. The term 8; is cast as an unmeasured latent

continuous random variable with an assumed standard normal distribution. Student is

decision to seek coaching is determined by a linear combination of the measured and

unmeasured covariates represented by Xi and 6i. The selection function specifies that if

a + X,y +5, > 0, student i will be coached. Otherwise, student i will not be coached.

Given assumptions i and ii, another way of writing the selection function is

7 In this setup, for the sake of parsimony, the covariates represented in Xi are the same in both Equation 7

and 8. This is not a restriction of the Heckman Model. It is possible for the covariates in the selection

function to contain unique covariates related to the probability a student is coached, but not to subsequent

SAT performance. Later I relax this notational restriction.

13
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Causal Inference and the Heckman Model

P(COACH, =11Xi)= P(a +X17+61 > OIX )

= P(-5, <a + I X;)

= cD(a + X17),

(10)

where (to represents the standard normal cumulative distribution function. Given all the

Xi's, the COACHi's are assumed to be independent, so Equation 10 constitutes what is

known as the probit model.

The following theorem8 helps explain how the Heckman Model goes from

specifying a selection function to getting an estimate for the bias term, E(cilXi,

COACH).

Theorem I

Let t represent the point in the distribution at which a continuous random variable

v N(0, 1) is truncated. When the truncation is from below

E(v Iv > t) = X(t) (11)

Var(v Iv > t) =1 X(t)[X(t) t], (12)

where

(t)
X(t)

4)
(13)

1 OW

1
4) 20)= e (14)

427c

cD(t) = f 4) (z)dz. (15)

8 For a proof of a more general version of this theorem, see Johnson & Kotz, 1970, 112-113. For a

description consistent with the Heckman Model, see Greene, 1990, 682-689.
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Causal Inference and the Heckman Model

A(t) is commonly referred to as the Inverse Mills Ratio or Hazard Function. It is the ratio

of the standard normal density function (14) to the normal cumulative distribution

function (15). When the truncation in v is from above, then by symmetry of the normal

distribution,

E(v Iv t)= X(t)= (I) (t)
.

ol) (t)
(16)

The goal is to estimate a value for the bias term E(E1I Xi, COACH,) for student i.

Fix a value xi for X. The selection bias term can be decomposed into two parts

E(s, I X, = x, COACH; =1) and E(s, I X = x COACH; = 0) . Given the underlying

behavioral model (Equations 7 and 8), and the condition that COACH = 1, it follows that

S; no longer has a normal distribution, but a truncated normal distribution. Theorem I is

used to compute the conditional expectation of which will be E(8, la + X,y +5, > 0).

Similarly, under the condition that COACHi= 0, it follows that bi again has a

conditionally truncated distributionthis time the truncation is from above. Now the

conditional expectation of (5; is E(8 la + X,y +8, 0) . The next step is to compute the

conditional expectation of ei, given Xi and COACH;.

Under the Heckman Model, ei and oi have correlation p. Let be a random

variable equal to (s, p8,)/V1 p 2 . It follows from this definition that has an

expected value of 0 and is independent of bi. Think of as the random variable that picks

up the variance left unexplained if Ei is regressed on Si. Now Ei can be related to Si and 6:

(17)
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Let si = +X,y . It follows from Equations 17 and 8 that

E(e, 1X. = x COACH, =1) = E(c1 1X1 = x + > 0)

= pE(6, Is, +6, > 0)

=pE(8,16,>.s.).

Note that 6 drops out of the equation because its conditional expectation is 0 by

definition. The task is to evaluate the conditional expectation on the right side of (18).

Taking advantage of the symmetry of the normal distribution and applying Theorem I

leads to the Inverse Mills Ratio,

(18)

(s )
E(6116; (19)>

1 0:1)(s;)

Likewise,

E(e,1X, = xCOACH; = 0) = E(81 IX; = xs, +6, 0)

= pE(5, Is, +6, 0) (20)

= pE(5,

This again yields the Inverse Mills Ratio

(s )
E(6116, (21)--s,) =

It follows from (18-21) that

E(s, I XCOACH,)= pk(COACH,,s,),

where

(22)

(1)(s
1) + (1 COACH;)-4)(s1) (23)(COACH,,$)=COACH;(

1 41)(s,)
.

(1)(s,)

A.,(COACHs) is a specific value for student i. While k(COACHs) is not directly

observable, it is estimable given the assumptions of the Heckman Model.

16
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Causal Inference and the Heckman Model

A, (COACH ,S,) is computed using (19), (21) and (23) after estimating parameter values

for a and y in (10) via maximum likelihood.

The behavioral model of (7) and (8) leads to

Y, = a + bCOACH ,+X,c + hX,(COACH ,) +6: (24)

where c la,,(COACH ,) . The causal parameter of interest is still b. The

parameter h associated with A, (COACH 0.0 in Equation 24 is equal to up. Consistent

estimates for b and h will be obtained by regressing Y, on a constant, COACH;, Xi and

k,(COACH S). Note that while it is 615 that is estimated by h , if an estimate for p is

desired, it can be obtained by dividing it by d , where d is estimated as a function of

residuals from the regression equation. Because the conditional variance of e; depends

on Xi, a regression fit by OLS will be heteroskedastic. Estimates for a, b, c and h will be

consistent, but inefficient. The standard errors estimated using OLS will be incorrect. A

regression fit by Generalized Least Squares (GLS) will solve the latter problem (Greene,

1981). If the GLS estimate for h is statistically significant, this suggests that had b been

estimated directly using linear regression without the Heckman correction, the estimate

would have contained selection bias.

Finally, note that A, (COACH essentially adds an interaction term consisting

of COACH, and the Inverse Mills Ratio to the main effect for COACH; in the regression

equation. The difference in expected SAT scores between coached and =coached

17
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Causal Inference and the Heckman Model

[
4)

students will be b + h
(d, + Xii%)

. The effect of coaching estimated
(I)(d, + X/i)(1 03)(ci, +X;7))

under the linear regression model is the combination of these two terms: the main

coaching effect and the coaching by Inverse Mills Ratio interaction. The term in brackets

will always be positive. The estimate h has been defined as the product of d and 0 .

Since d is always positive, if 0 is positive, this suggests that the coaching effect

estimate from the linear regression model would be biased upwards. If 0 is negative, it

suggests that the coaching effect estimate from the linear regression model would be

biased downwards.

To summarize, the Heckman Model as applied to coaching studies has two main

steps.

1. Specify a selection function for coaching status and estimate the parameters using

maximum likelihood. Use these estimated parameters, and the assumed normal

distributions of the response schedule and the selection function to compute the

Inverse Mills Ratio when COACH; = 1 and when COACH; = 0.

2. Include X, (COACH ,g,) in a linear regression equation as a covariate. Estimate

the coaching effect, As and the selection bias parameter, h (i.e. 60 ) using OLS or

GLS.

18
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From Linear Regression to the Heckman Model

When a causal effect is estimated in an observational study, its interpretation is

always threatened by the possibility of bias. Linear regression operates under the

principal assumption that bias occurs because confounding variables were omitted from

the regression equation. The Heckman Model assumes that bias comes from confounding

caused by omitted variables, and more specifically, from endogeneity caused by the self-

selection of subjects into treatment conditions. As presented here, the Heckman Model

can be viewed as a two-step "correction" to the linear regression model in the presence of

selection bias.9

Both linear regression and the Heckman Model assume that the functional form of

the causal relationship between outcome, treatment and covariates is linear. In the context

of observational studies where the coaching variable is dichotomous, the linearity

assumption is violated if some or all of the covariates in Xi have a nonlinear relationship

with If the linearity assumption is incorrect, a coaching effect will be estimated as the

difference between the wrong two regression surfaces. Both statistical approaches also

typically make a constancy constraint, i.e. b, = b, stipulating that person i = 1, , N is

affected by the treatment in the same way. The constancy constraint is violated, for

example, when certain types of students benefit significantly more or less from coaching.

Indeed, interaction effects between coaching and student characteristics have been

9 The Heckman Model can also be implemented as a one-step approach when estimation is done by

maximum likelihood, but the two-step approach is more common in the applied literature (Vella, 1998).

19
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analyzed from the very earliest coaching study by Dyer (1953) to the more recent study

by Briggs (2001). If the constancy constraint is wrong, then causal inferences about "the"

coaching effect may be misleading. Parametric assumptions such as linearity and

constancy have been discussed in more detail in the context of an alternative approach to

causal inference in observational settings known as the Propensity Matching Model. For

details, see Rosenbaum & Rubin, 1983; 1984 and Rosenbaum, 2002.

A key difference between the two approaches is the relaxation of the

independence assumption between ei and öi when going from linear regression to the

Heckman Model. Normality was assumed for ei and öi throughout in order to focus

attention on this difference. If normality does not hold, then the Heckman Model as

described here falls apart as a correction for the selection bias problem. Normality is a

necessary condition for consistent estimation under the Heckman Model, but not for

linear regression. If the Ei are iid, c1 and Si are independent within student i, confounding

covariates are included in the model, and the functional form is in fact linear, then linear

regression will produce unbiased causal effect estimates even when the distribution of Ei

is non-normal.

Of course, the linear regression model can also serve descriptive or predictive

purposes, with the well-known disclaimer that association does not imply causation. I

have presented the rather strong assumptions necessary before association does imply

causation. A clear problem in observational settings is that it is almost never realistic to

assume that the bias in causal effect estimates is due solely to confounding from
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measured covariates available to the investigating researcher. Generally speaking, the use

of linear regression with covariates will at best only reduce omitted variable bias, not

control or correct for it unequivocally.

Unlike linear regression, the Heckman Model is an approach specifically

developed in the attempt to make unbiased causal inferences in observational settings.

Because of the strong assumptions that underlie the model, its usefulness has been

questioned by some statisticians (Wainer, 1986) and econometricians (Goldberger, 1983;

Little, 1985). In one unusual case (Lalonde, 1986), the causal estimates from a Heckman

Model were put to the empirical testand the results were not encouraging. Lalonde

gained access to data from a federally randomized experiment conducted to determine the

average effect of a job training program. The effect was estimated by comparing the post-

treatment incomes of subjects in an experimental treatment group to the post-treatment

incomes of an experimental control group. Based on the findings from the randomized

experiment, the average effect of the program appeared to be a little over $800, with a

standard error of about $300. Lalonde attempted to recreate these results by substituting

non-experimental control groups for the experimental control, and using a Heckman

Model with different specifications of the selection function to approximate the result of

the randomized experiment. The results showed that when using four different selection

function specifications while holding constant gender and type of non-experimental

control group, the estimated effect of the program varied from $10 to $670, and in few

cases was the estimated effect within a standard error of the experimental estimate.

Lalonde did not however, conclude that the Heckman Model's apparent sensitivity to

2I

22



Causal Inference and the Heckman Model

alternate selection function specifications threatened the usefulness of the model, nor did

he speculate as to what drove this sensitivity.

Powers & Rock (1999) employed both linear regression and the Heckman Model

to estimate a causal effect for SAT coaching in an observational setting. The findings

from this study were that the two approaches produced relatively similar estimates of

coaching effects, and that neither approach produced effect estimates considerably

different from a baseline comparison with only pre-treatment test scores as covariates. In

a footnote Powers & Rock reported that their Heckman Model estimates had been

sensitive to specifications of the selection function, but no details were provided.

The relationship between the specification of the selection function and

subsequent effect estimates would seem to merit closer attention, because as a procedure,

the Heckman Model offers no guidance as to the covariates that should be included in its

selection function. It is only assumed that {Xi: i = 1, , n} is independent of {6i: i = 1, ...

,n}. As a matter of identifiability, it does not matter whether the covariates in the

selection function are different from those in the response schedule. The Inverse Mills

Ratio is identified through its nonlinear relationship to Xi. In some illustrations of the

Heckman Model, it has been suggested that the covariates in the selection function should

contain one or more variables related to the probability of treatment selection, but

excluded from outcome prediction (e.g. Lalonde, 1986; Greene, 1993). In other

illustrations, only covariates excluded from outcome prediction have been included in the

selection function (e.g. STATA, 2000). Ideally, it would seem the choice of covariates
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should be based on some theoretical understanding of the selection mechanism. I return

to this issue in my empirical analysis of SAT coaching effects using the Heckman Model.

The NELS Data

The National Education Longitudinal Study of 1988 (NELS:88, hereafter referred

to as "NELS") tracks a nationally representative sample of American students from the

8th grade through high school and beyond. The NELS data can be used for an

observational evaluation of coaching effectiveness because it contains SAT scores and

information about how students prepared for the SAT. A panel of nearly 15,000 students

completed survey questionnaires in the second two waves of NELS in 1990 and 1992.

One of these questions asked students to select from a range of options describing how

they had prepared to take the SAT. In addition to student questionnaire responses, high

school transcripts were collected. Each transcript included information on student grades,

course taking patterns, school demographics, and college admission test scores.

For the analysis that follows, attention is focused on the NELS panel sample of

students who completed surveys in the first (F1) and second (F2) follow-ups, and for

whom transcript data was collected. This comprises an Fl-F2 panel of 14,617 students.

(For more information on the NELS sampling design, see the NELS Second Follow-up

Student Component Data File User's Manual, 1995.) The emphasis in most SAT

coaching studies has been on students who have taken the SAT and for whom there is a

prior SAT or PSAT score available before a test preparation treatment has been
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introduced. I similarly restrict attention to the 3,504 students from the NELS subsample

who took both the PSAT and SAT, were members of the 10th grade and 12th grade

cohorts as of the NELS Fl and F2 surveys, and indicated whether or not they had been

coached as a means of preparing for the SAT.

The NELS Variables

To estimate a coaching effect from the NELS data using either linear regression

or the Heckman Model requires three types of variables: an outcome variable (Y), a

coaching variable (COACH) and covariates (X). I briefly describe each in turn.

Math and Verbal SAT Scores

The outcome variable of interest is a score on either the math or verbal section of

the SAT. As of the early 1990's, the SAT was a timed multiple choice test lasting for a

total of two and a half hours. The test was then, and is now, intended to measure the

constructs of mathematical and verbal reasoning, with scores from two different test

sections. Each score was based on student responses to about 85 verbal items and 60

math items on the SAT. Because this is a relatively large number of items, and the items

are chosen with great care, the SAT has the desirable technical feature of high internal

consistency. The reliability of SAT math and verbal scores using Cronbach's Alpha is

about .9, and the standard error of measurement for each test section is usually about 30

points. The mean and standard deviation of SAT-V scores (446 and 102) for the NELS
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subsample are both slightly lower than the mean and standard deviation of SAT-M scores

(501 and 117).8 The mean scores for all college-bound seniors taking the test in 1991-92

was about 423 on the SAT-V, and 475 on the SAT-M. The mean SAT scores for the

NELS subsample are slightly higher than those of the national population of test-takers

because they are restricted to those students who had previously taken the PSAT.

The Coaching Variable

The treatment variable of interest is whether or not students have been coached

before taking the SAT. The NELS F2 questionnaire asked students a targeted question

about their test preparation activities. This question is replicated verbatim below.

To prepare for the SAT and/or ACT, did you do any of the following?

A Take a special course at your high school
B Take a course offered by a commercial test preparation service
C Receive private one-to-one tutoring
D Study from test preparation books
E Use a test preparation video tape
F Use a test preparation computer program

With the exception of studying with a book, all of the methods listed above to prepare for

the SAT have been classified as coaching in previous studies. In this analysis, students

are classified as having been coached if they have enrolled in a commercial test

preparation course. For a student answering question B above with a "yes", the dummy

variable COACH is coded with a 1. For students answering with a "no", COACH is coded

8 The SAT score scale was recentered as of 1995 (see Dorans, 2002 for details) . Historical tables with

mean SAT scores are now expressed in this metric. The mean scores for the NELS POP1 subsample

correspond to recentered scores of 543 on the SAT-V and 524 on the SAT-M.
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with a 0. The distinction made here is whether a test-taker has received systematic

instruction over a short period of time. Preparation with books, videos and computers are

excluded from the coaching definition because while the instruction may be systematic, it

has no time constraint. Preparation with a tutor is excluded because while it may have a

time constraint, it is difficult to tell if the instruction has been systematic. This definition

of the term is consistent with that used by Powers & Rock (1999), and this makes the

coaching effect estimates generated from the NELS data somewhat more comparable

those generated from the nationally representative data in the Powers & Rock study.

Also, commercial coaching is the most controversial means of test preparation, because it

is costly, widely available, and comes with published claims as to its efficacy. About

15% of the students in the NELS subsample indicated that they had taken a commercial

course to prepare for the SAT.

Covariates

To control for confounding in the estimation of coaching effects, an appropriate

set of covariates must be chosen for X. The choice of covariates can be guided to a great

extent by previous investigations of coaching effectiveness. A review of the research

literature on SAT coaching (see Briggs, 2002) indicates that previous SAT or PSAT

scores, demographic characteristics, academic background and student motivation may

serve to confound coaching effect estimates. Student motivation can be further divided

into variables that proxy for intrinsic motivation (e.g. self-esteem) and extrinsic

motivation (e.g. parental pressure). The latter variables may predict whether students are
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likely to be coached, but are unlikely to have a direct influence on how students will

perform on the SAT. Variables measuring extrinsic motivation should be particularly

attractive candidates to include in a selection function for coaching as part of the

Heckman Model.

When coached and uncoached students are compared along these sets of

covariates in the NELS data, it appears that the coached group is more socioeconomically

advantaged and more extrinsically motivated to take the SAT then uncoached

counterparts. It is not clear that the coached group is necessarily comprised of

academically "smarter" or more intrinsically motivated studentsboth groups are

enrolled in college-preparatory classes, both performed about the same on NELS

standardized tests in reading and math, both report having comparable levels of self-

esteem, and both report that they do about the same amount of homework per week.

Analysis

Coaching effects can be estimated from the NELS data using both the linear

regression model and Heckman Model. Earlier I described a behavioral model for SAT

performance under which the coaching parameter b has a causal interpretation. This

model is revisited with a slight modification below.

f(COACH)= a + bCOACH + X,c +(ye,

COACH, =la a +Z,y +8, > O.

(25)

(26)

Y. = f. (COACH) = a + bCOACH, +X,c +6£ . (27)
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The selection function (26) has now been modified so that the covariates in the

selection function (4) are allowed to be different from those in the response schedule

(Xi). This behavioral model forms the basis for any coaching effect estimated using linear

regression or the Heckman approach.

Coaching effect estimates generated from linear regression or the Heckman

Model cannot be compared directly to one another because they rely on different

assumptions about the data structure, but they can be compared to the simplest

alternative: the average SAT section score for coached students minus the average SAT

score for uncoached students. For the SAT-V, this difference is 20 points (463 443); for

the SAT-M, the difference is 30 points (526 496). If coached and uncoached students

had been assigned randomly, these would be unbiased estimates of the coaching effects,

and the usual method of determining the statistical significance of these differences could

be used. Of course, the students in NELS were not randomly assigned, so these estimates

are almost surely biased to some degree. What do linear regression and the Heckman

Model suggest about the magnitude of this bias?

Coaching Effects and the Linear Regression Model

I start by specifying all covariates with a theoretical relationship to coaching

status and SAT performance in the linear regression model. There are a total of 21

covariates in the linear regression model.
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Pre-coaching SAT scores: (PSAT-V and PSAT-M).

Demographic characteristics: student age in years (AGE), socioeconomic status

(SES)1°, dummy variables for gender (FEMALE), race/ethnicity (ASIAN, BLACK,

HISPANIC, AM INDIAN, WHITE), and whether the student's high school was

public or private (PRIVATE), or located in a suburban, rural or urban locations

(SCH URB, SCH RUR, SCH SUB).

Academic background: dummy variables for whether or not a student reports

having taken an Advanced Placement class (AP) or remedial classes in math

(RE MATH) or English (RE_ENG); a dummy variable indicating whether or not

the student has been enrolled in a rigorous academic program while in high school

(RIGHSP); scores on standardized achievement tests in math (F1MATH) and

reading (F1READ) administered as parts of the NELS survey, the number of units

a student has taken in college preparatory math courses11 ( MTHCRD), and his or

her weighted grade point average in those courses (MTHGRD).

Intrinsic student motivation: the NELS self-esteem (F1 ESTEEM) and locus of

control (F 1LOCUS) indices, and a dummy variable indicating whether the student

I° The SES index was developed as part of the NELS database, and combines information about parental

education, income and occupation into a single variable. Generally, students with higher SES values come

from families with parents that are better educated, wealthier and have jobs in more prestigious

occupations. For the NELS subsample considered here, the SES index has a mean of .44, a standard

deviation of .73, and a range from 2.4 to 2.5.

I I College preparatory math courses consist of algebra, geometry, trigonometry, pre-calculus and calculus.
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reported averaging more than 10 hours per week on homework during high school

(HOMEWORK).

The reference categories are WHITE and SCH SUB for the racial/ethnic and school

location dummy variables respectively.

Table 1. Coaching Effects using the Linear Regression Model

SAT-V (mean = 447, sd = 101) SAT-M (mean = 504, sd = 116)
R2 .788 .822

adj R2 .787 .818
Coached/Total 503/3144 503/3144

Variables in Std Error Range
a'13'i

Std Error Range
ei'&i'Regression Eqn DEFF =1 DEFF= 3 DEFF =1 DEFF= 3

Constant 144.1 36.1 63.6 -7.6 37.5 66.1
COACH 11.1' 2.4 4.3 19.2' 2.5 4.5
PSAT-M .05' .02 .03 .41' .02 .03
PSAT-V .61' .01 .02 .09' .01 .02
AGE -8.7' 1.9 3.4 -2.7 2.0 3.5
SES 3.8 1.4 2.4 10.2' 1.4 2.5
FEMALE -5.0 1.9 3.3 -16.1' 1.9 3.4
ASIAN 7.9 3.5 6.2 4.8 3.6 6.4
BLACK -3.5 3.2 5.6 -14.3' 3.3 5.8
HISPANIC -3.1 3.4 6.1 -4.6 3.6 6.3
AM INDIAN -6.2 14.4 25.4 -26.2 15.0 26.4
PRIVATE 8.9" 2.4 4.2 -0.9 2.5 4.4
SCH RUR -6.6 2.3 4.0 -3.5 2.4 4.1
SCH URB 1.1 2.0 3.6 1.3 2.1 3.7
AP 12.4' 1.9 3.3 8.8' 2.0 3.5
RE_ENG -11.4 4.2 7.4 8.2 4.4 7.7
RE_MATH 1.7 4.0 7.1 -19.1' 4.2 7.3
RIG_HSP -1.2 1.7 3.1 2.8 1.8 3.2
FIREAD 2.5' 0.2 0.3 -0.5 0.2 0.3
FIMATH 0.4 0.2 0.4 4.9' 0.2 0.4
MTHCRD -1.3 1.3 2.3 8.8' 1.3 2.4
MTHGRD 3.6 1.4 2.4 14.8' 1.4 2.5
FIESTEEM 5.2 1.6 2.8 -1.9 1.6 2.9
FILOCUS -6.2 1.8 3.2 -2.1 1.9 3.4
HOMEWORK 3.5 1.8 3.1 1.4 1.9 3.3

* p-value for two-sided t-test < .05 across SE range
DEFF = design effect correction

Table 1 reports the results of separate linear regressions of student SAT-V and

SAT-M scores on a constant, COACH, and the full set of 21 covariates in Xi listed above.

Each regression was weighted by the variable DESWGT to account for the NELS

30

31



Causal Inference and the Heckman Model

population weights, as well as the design effects caused by the stratification and

clustering of students in the NELS sample (see Appendix A for details). Regressions

were run with two different versions of DESWGT; one with a design effect correction set

equal to 1 (e.g no design effect), the other with a correction set equal to 3. The clustering

of students in the POP 1 subsample, amounts to a mean of 4 and median of 6 students per

schoolrelative to a mean and median of 14 for the full F1 -F2 panel sample. In the

NELS subsample there is on average just one coached student per sampled school. Given

this, using a design effect correction of 3 will probably overestimate standard errors. All

else being equal, the standard errors of parameter estimates associated with each version

of the DESWGT variable should reflect lower and upper bounds in tests of statistical

significance, and to give a sense for this range, both are reported for the regression

coefficient estimates in Table 1.

Under the linear regression model, the estimated effect for COACH is 11 and 19

points respectively on the SAT-V and SAT-M. Expressed as a proportion of a standard

deviation in SAT scores, this amounts to effect sizes of .11 and .16 for each estimate.

Both effects are statistically significant whether tested using the standard errors based on

the lower or upper design effect bounds. Using the more conservative standard error

estimate, the 95% confidence intervals for the estimated SAT-V and SAT-M coaching

effects are [3, 20] and [10, 28]. These estimated effects suggest that the linear regression

model reduces bias due to confounding. After including the covariates Xi in the model,

the estimated SAT-V coaching effect decreases by 9 points from 20 to 11, and the

estimated SAT-M coaching effect decreases by 11 points from 30 to 19.
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On the whole, the estimated coaching effects and associations of covariates with

SAT-V and SAT-M scores in the linear regression model seem reasonable. Still, the

possibility that one or more is biased cannot be ruled out. One possible source of bias

may be additional covariates that have been mistakenly omitted from the regression

model. For example, perhaps the correct model would include a series of interaction

terms with the coaching variable (c.f. Briggs, in press). Another possibility is that bias

exists of a very specific nature due to the endogeneity of the variable COACH. This latter

problem is one that the Heckman Model has been designed to solve.

Coaching Effects and the Heckman Model

Specifying a Selection Function

In order to estimate an effect for COACH using the Heckman Model, I start by

specifying a selection function that, given a set of covariates Z,, predicts whether student

i will be coached or not. The specification decision hinges upon what covariates are

included in Ideally, students in the NELS survey would have been asked questions

about why they did or did not enroll in coaching programs, but as NELS was not

designed with the Heckman Model in mind, such data is not available. This is a fairly

typical situation in an observational study. As a consequence, the specification of a

selection function is seldom guided by theory. In many empirical applications of the
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Heckman Model, the decision of what covariates to include in Zi appears to be largely a

matter of ensuring that the model is well identified.

Figure 3. Five Selection Function Specification

SF1 = {Xi}
SF2 = {Xi, PARENT;}
SF3 Z4 {PARENT;, PPRESSi, HWTUTORi, HI_MOT;}
SF4 74 = {SESi, SCH RURi, REMATHi, MTHCRD,, PPRESSi, HWTUTORi, HI MOT,}
SF5 = {AGE;, SES,, SCH RURi, MTHGRDi, PARENT;, PPRESSi, HWTU7'0Ri, HI MOT}

SF2, SF3, SF4 and SF5. The predictors in each specification are listed in Figure 3. Which

of these is the "right" specification of the selection function? A reasonable case could be

made for each of the five. In SF1, all the covariates specified as possible confounders in

the regression equation are included as predictors in the selection function, and this

represents the kind of mechanical use of the Heckman Model to be expected when the

data analyst has no operating theory for how students select themselves into coaching.

Note that the Heckman Model in this case is identified only by the nonlinearity of the

selection function. Some have referred to this as "weak" identification (Breen, 1996;

Vella, 1998). In SF2, one additional predictor, the dummy variable PARENTwhich

takes a value of 1 if a student was strongly encouraged by his or her parents to prepare for

the SAThas been added to the selection function. Now the model is overidentified,

since PARENT is not a covariate in the response schedule. Here we imagine the data

analyst has access to at least one variable thought to predict coaching status, but not SAT

performance. This is known as a single exclusion restriction. SF2 doesn't constitute a

theory per se, but it is the simplest possible improvement over SF1. For SF3, only

covariates excluded from Xi in the linear regression equation are included as predictors in
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the selection function12, where PPRESS, HWTUTOR and HI MOT are dummy variables

that take values of 1 if the student's test preparation plans were "often" discussed with his

or her parents, if the student had a private tutor that helped with homework during high

school, and if the student did poorly on the PSAT relative to his high school GPA in math

courses. Under SF3, there are now four variables thought to predict coaching status, but

not SAT performance. In addition, the strong and questionable assumption is made that

no covariates in Xi should be used to predict coaching status. The specification SF3 is

meant as an extreme contrast with SF1. In SF1, all covariates in X1 are also in Zi; in SF3,

no covariates13 in Xi are also in Z1. In SF4, all predictors included in the selection

function are chosen by a stepwise selection algorithm. SF4 is another example of a

mechanical approach a data analyst might take in specifying the selection function: all

possible covariates are thrown into an algorithm, and an optimal subset emerges. Finally,

for SF5, predictors are chosen for two reasons: because they have some theoretical

relationship to coaching status (SES, PARENT, PPRESS, HWTUTOR, HI MOT) or

because they have an empirical relationship to coaching status (AGE, SCH RUR,

MTHGRD). SF5 is an approximation of a theory-based specification approach. Here the

12 Values for the predictors PARENT, PPRESS and HWTUTOR were missing for anywhere from 2 to 10%

of the NELS subsample of 3,144 students used in the linear regression model. To ensure that subsequent

Heckman Model parameter estimates will be based on the same sample of students as those produced by

linear regression, missing values for these predictors were coded as three unique dummy variables which

took the value of 1 if a student's response was missing, and 0 otherwise. For any selection function

specification including one or more of these three variables, the associated missing value dummy variable

MPARENT, MPPRESS or A br IW7'UTOR was also included.

13 Strictly speaking this is not true since HI MOT is itself a function of PSAT-V, PSAT-M and MTHGRD.
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data analyst has taken some care in choosing predictors with a hypothesized relationship

to coaching status (i.e. it is well-established that coaching programs can be expensive,

and hence high-SES students are more likely to enroll in them). In addition, the data

analyst has analyzed the pairwise cross-tabulations of all covariates with coaching status,

and included three for which there was evidence of a statistically significant relationship.

SF5 has four exclusion restrictions as in SF3, but includes in Zi a subset of covariates

from Xi, as in SF4.

Table 2 presents the parameter estimates generated from a weighted probit model

(weighted by the variable DESWGTi with a design effect correction of 3) for each of the

five SF specifications. It is not at all obvious on statistical grounds that any one of the

five specifications is the best choice for use in the Heckman Model. Unlike linear

regression, where model fit is often assessed on the basis of R2, there is no such measure

of absolute fit for the probit model. When compared using a likelihood ratio (LR) test to a

baseline specification with just a constant and no predictors, all five SF specifications

would be considered a statistical improvement. A variant of this approach is represented

by the "Pseudo R2" values in the third row of Table 2. The Pseudo R2 for each

specification is calculated as (1 L)/Lo, where L is the log likelihood for a given

specification of the selection function, and Lo is the log likelihood for the baseline

specification. According to this criterion, the SF4 and SF5 specifications improve model

fit the best relative to the baseline model, but not by muchall five specifications are

within about .04 of one another. Of the five specifications, only SF1 and SF2 are nested

and can be compared directly using a likelihood ratio test. The difference in deviance
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between SF2 and SF1 is 11.7 with an approximate Chi-Square distribution on 2 degrees

of freedom. On this basis SF1 can be rejected in favor of SF2, but no LR test can

recommend SF2 over SF3, SF4 or SF5.

Table 2. Selection Function Parameters Estimated using Weighted Probit Model

SF1 SF2 SF3 SF4 SF5
Log Likelihood -1175.3 -1163.6 -1187.3 -1119.2 -1119.2
dof 23 25 7 8 11

Pseudo R2 .0994 .1084 .0902 .1424 .1423
% sig covariates 13% (3/23) 20% (5/25) 86% (6/7) 100% (8/8) 72% (8/11)
Variables in ci,i se ci,i' se ci.,7 se oi,1 se ci, if se
Selection Fcn
Constant -3.984' 1.886 -4.712' 1.921 -2.115' .187 -2.146' .234 -4.202' 1.870
PSAT-M -.0006 .0007 -.0006 .0007
PSAT-V -.0004 .0006 -.0003 .0006
AGE .142 .099 .142 .100 .112 .102
SES .563' .091 .548' .091 .441' .078 .439' .079
FEMALE .084 .096 .084 .096
ASIAN .128 .153 .138 .154
BLACK .078 .170 .097 .170
HISPANIC -.031 .163 -.028 .166
NATIVE -.326 .518 -.342 .518
PRIVATE .058 .146 .061 .148
SCH RUR -.390' .116 -.374' .117 -.429' .124 -.416' .120
SCH URB .065 .159 .066 .159
AP -.052 .142 -.049 .143
RE_ENG .151 .200 .149 .199
REMATH .300 .199 .307 .194 .471" .161
RIG_HSP .093 .108 .092 .108
FIREAD .001 .008 .001 .008
FIMATH -.010 .009 -.010 .009
MTHCRD .143' .058 .139' .058 .138' .055
MTHGRD .159 .113 .161 .113 .009 .057
FIESTEEM .114 .078 .117 .077
F1LOCUS -.093 .093 -.097 .093
HOMEWORK .006 .097 -.003 .097
PARENT' .695* .191 .702' .187 .602' .188
MPARENT' .745' .220 .721' .230 .688' .231

PPRESS' .677' .130 .652' .115 .628' .115
MPPRESS° .529" .145 .552' .149 .526' .143
HWTUTOR° .459" .113 .333' .121 .334' .121
MHWTUTOle .560 .394 .592 .370
HI MOT' .472" .233 .424' .210 .447 .205

* p-value for two-sided t-test < .05 (DEFF = 3)
N = 3,144
a These covariates are excluded from the regression equation
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Another possible criterion to consider in picking a "best fitting" specification is

one with the largest proportion of statistically significant probit coefficient estimates.

This is fairly important, since the next step of the Heckman Model is to calculate an

Inverse Mills Ratio as a function of the estimated coefficients, whether they are

significant or not. Naturally, the SF4 specification comes out on top hereall of its

coefficients are statistically significant, because its predictors were selected with this

criterion in mind. The SF3 and SF5 specifications are not far behind, with 86% and 72%

of estimated coefficients statistically significant. SF I and SF2 are particularly weak

relative to this criterion, with only 13% and 20% of estimated coefficients statistically

significant.

For each of the k = 1 through 5 SF specifications, let gik =Cik + YkZ, . Figure 4

shows the plots of the predicted probabilities of being coached as a function of gik. The

shape of the five curves is generally quite similar, though for SF4 and SF5 the highest

estimated probability is about .2 higher at the maximum value of ',id,. In terms of the

actual and predicted number of coached students for each specification, all the

specifications tend to underpredict the number of coached students. None of these models

predicts correctly the coaching status for more than about 20% of those students who

were actually coached.
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Figure 4. Predicted Probabilities of COACH = 1 for SF Specifications
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The point of these model comparisons is that in most applications of the Heckman

Model, precious little ink has been spent validating selection function specifications.

Seldom are alternate specifications compared, and it is even more seldom that there is

any theory to bolster the specification ultimately chosen. The decision of what predictors

38

3P



Causal Inference and the Heckman Model

to include or exclude from the selection function is a non-trivial one, and can have

substantial ramifications on the estimated parameters generated by the Heckman Model.

Heckman Model Estimates

Using Equation 23, A,,,(COACH Air) can be estimated for the k= 1, ..., 5 SF

specifications. For the second step of the Heckman Model I proceed by including

(COACH,,,"sa) as a covariate in the regression of Yi on a constant, COACH;, and X.

The covariates in Xi are identical to those specified for the linear regression model. All

cases are weighted by DESWGZ with a design effect correction of 3. In addition, because

the conditional variance of ei under the Heckman Model is heteroskedastic, a generalized

least squares fitting procedure (Greene, 1981) is used to get efficient standard error

estimates for the regression coefficients. Table 3 reports the results of these regressions

for SAT-V and SAT-M test scores.

Table 3. SAT Coaching Effects using the Heckman Model

SAT-V SAT-M

COACH; A.1(COACHii) 15 of Oh a) COACH; 5 of (5, si)
SF I 69* (30) -32* (16) -.60 79* (30) -33* (17) -.64
SF2 58* (26) -26 (14) -.42 59* (28) -22 (15) -.36
SF3 0 (15) 7 (8) .15 30 (16) -6 (9) -.10
SF4 17 (15) -3 (9) -.05 46* (16) -16 (9) -.25
SF5 12 (15) -1 (8) -.01 42* (15) -13 (9) -.20

N = 3,144 [effective sample size after design effect correction = 1,015]
* p-value < .05 (based standard errors with design effect = 3)

SF I = all covariates in regression eqn used in selection eqn
SF2 = all covariates in regression eqn + 1 covariate (PARENT) not used in reg eqn
SF3 = only covariates not used in reg eqn, all dummies (HWTUTOR, PARENT, PPRESS, HI_MOT)
SF4 = covariates chosen by stepwise selection (SCH RUR, PPRESS, HWTUTOR, REMATH, HI MOT, SES,

MTHCRD
SF5 = covariates that were stat sig in coaching crosstabs (AGE, SES, MTHGRD, SCH RUR, HWTUTOR,

PARENT, PPRESS, HI MOT)
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The estimated effects for COACH vary, sometimes dramatically, depending upon

which version of k, (COACH is included in the Heckman Model. For specifications

with SAT-V as the dependent variable, the estimated coaching effect ranges from a low of

0 points to a high of 69 points. For specifications with SAT-M as the dependent variable,

the estimated coaching effect ranges from a low of 30 points, to a high of 80 points.

Parameter estimates for covariates under all five specifications of the Heckman Model

with either SAT-V or SAT-M as the dependent variable were generally similar to those

from the linear regression model.

Depending upon the selection function that is specified, the Heckman Model tells

a different story about the nature of selection bias in SAT coaching. In models with SAT-

V as the dependent variable, the estimated correlation l between oi and Ei is -.60 and -.42

for SF I and SF2, but close to zero for SF4 and SF5. When SAT-M is the dependent

variable, the estimated correlation is -.64 for SF1, but between -.36 and

-.10 for SF2 through SF5.

Only in the SF1 specification of the model is the parameter estimate for

X, (COACH Sur) also statistically significant, indicating the presence of selection bias.

For these (as well as most other) specifications, the estimated negative correlations

between 6i and ei would suggest that the students who are more likely to get coached are

the ones who are less likely to perform well on a particular section of the SAT. If these

versions of the Heckman Model are to be believed, it would indicate that the coaching
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effects estimated by the linear regression model will be biased downwards. On the other

hand, most specifications of the Heckman Model considered here suggest that any

selection bias in the data is not statistically significant.

Multicollinearity helps explain why coaching effect estimates vary so

dramatically, with large standard errors, under different specifications of the Heckman

Model selection function. In particular, the variable COACH; and Ad, (COACH gak) are

strongly correlated, which follows from the fact that the latter is defined as an interaction

with the former. When the A.,k(COACH:5, ) based on SF1 and SF2 are regressed on a

constant, COACH; and Xi, the respective adjusted R2's are .98 and .97. Likewise, the

regressions based on SF3, SF4 and SF5 have adjusted R2's of .92, .94 and .92.

To see more clearly the collinear relationship between the variable COACH; and

X (COACH,,g,5) , I subtract from each variable its predicted value when regressed on X.

The resulting variable is the residual component not predicted by Xi. The two

residualized variables COACH, and X,5 (COA Cl/0 Si 5 )r are plotted in Figures 5 and

6 for the conditions COACH; = 1 and COACHi= 0. The correlation between the

residualized variables is still about .73.
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Figure 5. Col linearity when COACH = 1 (p = .72)

COACHr
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Figure 6. Col linearity when COACH = 0 (p = .74)

COACHr
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The easiest solution to the multicollinearity problem is to omit one or more

covariates from the regression equation. But this is no real solution to the problem

because the underlying behavioral model has now been violatedany decrease in

multicollinearity will come with a potential increase in bias. Other solutions have been

proposed and applied to handle collinear data without omitting variables (c.f. ridge

regression and principal components analysis described in Greene, 1993, p. 270-273). A

detailed discussion of these methods is outside the scope of this paper, but it is important

to note that "solutions" to multicollinearity have their own associated problems. To the

extent that such methods change the structure and relationship of the data under
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consideration, they will almost certainly change the causal interpretation of the Heckman

Model as presented here.

Empirical Comparisons

Figures 7 and 8 compare the estimated SAT-V and SAT-M coaching effects

estimated by 1) taking the difference in average scores between coached and uncoached

students, 2) using linear regression and 3) using the five Heckman Model specifications. I

include around each point estimate the corresponding 95% confidence interval.

Figure 7. Comparison of SAT-V Coaching Effect Estimates
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Figure 8. Comparison of SAT-M Coaching Effect Estimates
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For the SAT-V, the linear regression model produces a statistically significant

point estimates of about 11 points for the coaching effect. The Heckman Model produces

effect estimates ranging from 0 to 70 points, only two of which (SF1 and SF2) are

statistically significant. If the SF I and SF2 specification of the Heckman Model are

ignored, the SAT-V effect estimates from both models are smaller than what would be

estimated by simply taking the average difference in SAT-V scores for coached and

uncoached students. For the SAT-M, the Heckman Model produces coaching effect

estimates ranging from 30 to 70 pointsestimates that are generally more than twice as

large as the 19 point estimate produced under linear regression. The SAT-M coaching

effect estimates tend to be statistically significant under both models. Under the Heckman

Model the estimates tend to be larger (SF 3 is the exception) than what would be
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estimated by simply taking the difference in the average SAT-M scores for coached and

uncoached students, while under linear regression the estimate is smaller.

Unlike the Lalonde study, there is no absolute criterion against which to compare

the coaching effects estimated by the Heckman Model. Only the Powers & Rock study

has used the Heckman Model to estimate coaching effects. The covariates and predictors

available in the Powers & Rock data, while not quite of the same quality as some of those

available from NELS, were fairly similar. In their regression equation Powers & Rock

included covariates for PSAT or first SAT scores, father's education, student high school

GPA, math GPA, race/ethnicity and two measures of student motivation.14 Their

selection function included all the same variables, and also included student's GPA in

high school social science courses. This specification of the Heckman Model is probably

most comparable to my SF2. Yet Powers & Rock's SAT-V coaching effect estimate (12

points) produced using the Heckman Model was similar only to those produced under

SF4 and SF5 with the NELS data; for the SAT-M their effect estimate (13 points) was

generally less than a third of the NELS-based estimates. Powers & Rock also estimated

standard errors that were on the whole much smaller than those found in the analysis of

the NELS data, in part perhaps because their data structure did not require a design effect

correction.

14 This information was not included in their published study of 1999, but was provided to me in a personal

communication (Rock, 2002).
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Discussion

This paper has hopefully shed some light on the use of the Heckman Model to

estimate unbiased causal effects with observational data. Extreme caution should be

exercised before applying the Heckman Model as a means of drawing causal inferences

about a treatment effect. There is seldom any theory to guide the specification of the

selection function, and if the selection function is specified just with the objective of

identifying the model (e.g. SF I and SF2), the resulting effect estimates will probably be

highly questionable, if not completely out of whack. Once a selection function has been

specified, estimated, and used to calculate the Inverse Mills Ratio, the next concern

should be the potential for multicollinearity between the covariates, the treatment

variable, and the interaction between the treatment variable and the Inverse Mills Ratio,

with most of the problem stemming from the collinearity among the latter terms. When

multicollinearity is a problem, it may cast doubt on both the estimated treatment effect

and the standard errors around the treatment effect. All too often the Heckman Model has

been applied in the social science with little to no discussion of these issues. With access

to the right software (e.g. STATA, LIMDEP), the Heckman Model is easily implemented

with seemingly obvious causal conclusions. I would suggest that when this is takes place

without a compelling theoretical rationale and a careful scrutiny of the data, such

conclusions are of dubious value.

In general, researchers must be quite cautious in using statistical models to draw

causal conclusions, particularly given the types of assumptions that must be invoked.
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There is no statistical silver bullet. In the social sciences, bias in the estimated effects

from any given study is very difficult to rule out, no matter how intuitively appealing the

methodology. A point worth emphasizing is that the best way to establish a causal effect

from observational data, irrespective of the statistical model being used, is to replicate the

results with a different sample. There was no single study or statistical model that

established from observational data the deleterious effects of smoking on a range of

health outcomes. Rather it was the consistent replication of these findings over a long

period of time that led the way to what is now an accepted causal relationship. It is

unfortunate that this approach has seemingly had limited traction in the educational

research literature.
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Appendix: Population Weights and Design Effects

Sample weights have been constructed and made available as part of the NELS

database to allow for population inferences from the longitudinal and cross-sectional

samples. To make the F1 -F2 panel sample representative of the national population of

10th to 12th grade students during the 1990 to 1992 period, the NELS weight F2TRP2WT

is applied to all statistical analyses that follow. Use of this weight indicates that the Fl -F2

NELS panel is representative of an underlying population of about three million students.

Since the NELS F1 -F2 panel is generated from a stratified cluster sample (SCS), the

estimated standard errors of population parameters (e.g. the mean for a particular

transcript variable or survey item response) will generally be larger than the standard

errors that would be estimated had the panel been generated from a simple random

sample (SRS). The ratio of these two standard error estimates for any given parameter

corresponding to the variable j is known as a design effect (DEFF). That is

DEFFi =SEJ(SCS)
SE i(SRS).

The standard errors estimated by typical statistical software packages such as SPSS,

STATA or SAS are generally calculated under the assumption that the data has come

from a SRS. The larger the design effect, the more that standard errors erroneously

calculated under an SRS assumption will underestimate the standard errors that befit the

SCS sample design of NELS. Essentially, the clustering of the NELS sample decreases

the effective sample size because students sampled within the same school are not

statistically independent. Note that this violates a common assumption of both linear

regression and the Heckman Model, namely, that Et and öi are each independently
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distributed across students. If this lack of independence is not taken into account, tests of

significance using estimated standard errors that are too small may well result in Type

errors.

A school identification code is available for 13,471 students (92%) in the NELS

F1 -F2 panel. These students were sampled from 974 different high schools. The mean

and median size of the student clusters per school is 14. According to the NELS F2

manual this corresponds to a mean and median design effect across all variables of about

3.7 and 3. For subsamples of students in the F1 -F2 panel, the mean and median cluster

sizes, and presumably the corresponding design effects will be smaller. Finding out just

how much smaller is outside the scope of this study. For the analyses that follow, all

standard errors are estimated using proportional population weights that include a design

effect correction to reduce the effective sample size. This amounts to a first order

approximation of the standard errors that would be estimated under the assumption of a

SCS.

More specifically, denote each student in the NELS Fl-F2 panel sample with the

subscript i. For any subset of S cases taken from the F1 -F2 panel sample, the NELS

variables that correspond to student i are weighted by the variable DESWGT, where

DESWG7;
1

=
DEFF

F2TRP2W7;
s

-E F2TRP2WT
\S

F2TRP2WT, is the population weight of cases in the F1 -F2 panel sample for

whom transcript data was collected, and DEFF is a postulated design effect that applies
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to all NELS variables. As an approximation of the design effect associated with each

variable, it is assumed that DEFF; = DEFF. The appropriate DEFF value for the F I-F2

subsamples is probably somewhere between 1 (no design effect) and 3 (the median

DEFF for all variables in the F1 -F2 panel sample). I generally take a conservative

approach to standard error estimation, using DEFF = 3 for all tests of statistical

significance unless otherwise specified. In all tests of statistical significance, a critical

value of .05 was applied.
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